

# ADL3 - ADVANCED DASH LOGGER ENCLOSED



The Enclosed Dash Logger (EDL3) is a combined fully programmable data logger and powerful control device in one lightweight unit.

Based on the ADL3, it is supplied in an enclosed unit providing the flexibility to connect a display suitable for your application or to use as a 'black box' type data logger. It provides all the advanced features of MoTeC's ADL3 Dash Logger, including warning alarms, lap times, fuel calculations, minimum corner speeds, maximum straight speeds and more.

The EDL3 performs calculations, acquiring data from other MoTeC devices such as an ECU, Dash Logger and VIMs, which enable it to log more than 300 inputs, including high resolution sensor inputs.

# **FEATURES**

- All-in-one logger and controller
- Suitable for bikes, cars, marine and industrial applications
- Supports Wideband Lambda from MoTeC PLMs or LTCs
- Easily integrates with MoTeC CAN based products such as ECUs, expanders, lap timing devices and shift lights
- More than 300 sensor inputs, using VIM input expanders
- GPS Lap Timing
- Tell Tales
- Diagnostic Logging

- Preserved Channels
- Running Min/Max, Timers, PID Control, Telemetry, Engine Log

# ACCESSORIES

- Standard Ethernet cable
- 61213 ADL3 loom
- 61131 Ethernet cable, unterminated, 2 metre

# UPGRADES

- Data Logging: Increases internal logging memory to 250 MB
- Pro Analysis: Provides access to advanced i2 Pro data analysis software
- Telemetry: Enables transmission of live data from the vehicle
- Remote Logging: Enables converting telemetry data into a log file
- 52 I/O: Provides additional input/output functionality consisting of:
  - 14 extra Analogue voltage inputs (AV11 to AV24, see pinout)
  - 4 extra Analogue temperature inputs (AT5 to AT8, see pinout)
  - 4 extra Auxiliary outputs (AUX5 to AUX8, see pinout)

# SPECIFICATIONS

#### Logging

- 16 MB standard logging memory (250 MB optional)
- Logging rates up to 1000 samples per second
- Fast Ethernet download

#### Inputs

- 10 x Analogue voltage inputs (24 optional)
- 4 x Analogue temperature inputs (8 optional)
- 4 x Digital inputs
- 4 x Speed inputs with voltage measuring capability
- 4 x Switched inputs
- Compatible with VIM input expanders

#### Outputs

- 4 x PWM, digital or switched outputs (8 optional)
- Compatible with up to 2 E888/E816 input/output expanders

#### **Internal Sensors**

- 3-axis accelerometer, detection range: +/- 5G
- Dash temperature sensor

# **DIMENSIONS AND MOUNTING**

- Sensor supply voltage
- Battery voltage

#### Communications

- 2 x CAN with individually programmable CAN bus speeds
- 1 x RS232

#### Physical

- Dimensions: 194.5 x 98 x 14.3 mm excluding connector
- Weight: 420 g
- 1 x 79 pin Autosport connector

# SOFTWARE

Windows-based software designed for setup and management of the display and data logging system, that provides:

- Configuration of the inputs, ouputs, LEDs, display, data logging and calculations
- Offline generation of a configuration file that can then be sent to the device.
- Channel monitoring
- Firmware updating and extensive help screens

Dimensions are in mm. Ensure product is not stressed when mounted.



# ETHERNET WIRING

| Ethernet Connector |               | MoTeC Loom   | EDL3 |               |
|--------------------|---------------|--------------|------|---------------|
| Pin                | Function      | - Colour     | Pin  | Function      |
| 1                  | ethernet TX + | orange/white | 77   | ethernet RX + |
| 2                  | ethernet TX - | orange       | 78   | ethernet RX - |
| 3                  | ethernet RX + | green/white  | 67   | ethernet TX + |
| 6                  | ethernet RX - | green        | 68   | ethernet TX - |

The wiring specified is the preferred cross-over configuration. However, the wiring can also be configured as straight-through. Cat 5 Ethernet cable must be used.

#### **Pin Numbering**



# **ECU WIRING**

When using an M4, M48 or M8 ECU, the EDL3 should be connected via RS232. For some ECUs, a PCI cable may also be required.

The Display Logger should be connected via the CAN bus when using a 'hundred series' ECU (M400/M600/M800/M880) or M84, and any number of other CAN devices. See the following example.



Detailed wiring information is available in the user manual at www.motec.com/downloads.

# **PINOUT**

# Mating connector: Part number 68086

| Pin | Name | Function                                        |
|-----|------|-------------------------------------------------|
| 1   | AV15 | Analogue Voltage Input 15 (with 52 I/O upgrade) |
| 2   | AV16 | Analogue Voltage Input 16 (with 52 I/O upgrade) |
| 3   | AV17 | Analogue Voltage Input 17 (with 52 I/O upgrade) |
| 4   | AV18 | Analogue Voltage Input 18 (with 52 I/O upgrade) |
| 5   | AV19 | Analogue Voltage Input 19 (with 52 I/O upgrade) |
| 6   | 0V   | Sensor 0 V                                      |
| 7   | BAT- | Battery Negative                                |
| 8   | BAT+ | Battery Positive                                |
| 9   | AUX1 | Auxiliary Output 1                              |
| 10  | AUX2 | Auxiliary Output 2                              |
| 11  | AUX3 | Auxiliary Output 3                              |
| 12  | AUX4 | Auxiliary Output 4                              |
| 13  | AUX5 | Auxiliary Output 5 (with 52 I/O upgrade)        |
| 14  | AUX6 | Auxiliary Output 6 (with 52 I/O upgrade)        |
| 15  | AUX7 | Auxiliary Output 7 (with 52 I/O upgrade)        |
| 16  | AUX8 | Auxiliary Output 8 (with 52 I/O upgrade)        |
| 17  | 0V   | Sensor 0 V                                      |
| 18  | 5V   | Sensor 5 V                                      |
| 19  | AV7  | Analogue Voltage Input 7                        |
| 20  | AV8  | Analogue Voltage Input 8                        |
| 21  | AV9  | Analogue Voltage Input 9                        |
| 22  | AV10 | Analogue Voltage Input 10                       |
| 23  | AV11 | Analogue Voltage Input 11 (with 52 I/O upgrade) |
| 24  | AV12 | Analogue Voltage Input 12 (with 52 I/O upgrade) |
| 25  | AV13 | Analogue Voltage Input 13 (with 52 I/O upgrade) |
| 26  | AV14 | Analogue Voltage Input 14 (with 52 I/O upgrade) |
| 27  | 0V   | Sensor 0 V                                      |
| 28  | 5V   | Sensor 5 V                                      |
| 29  | AV21 | Analogue Voltage Input 21 (with 52 I/O upgrade) |
| 30  | AV22 | Analogue Voltage Input 22 (with 52 I/O upgrade) |
| 31  | AV23 | Analogue Voltage Input 23 (with 52 I/O upgrade) |
| 32  | AV24 | Analogue Voltage Input 24 (with 52 I/O upgrade) |
| 33  | 0V   | Sensor 0 V                                      |
| 34  | AT1  | Analogue Temp Input 1                           |
| 35  | AT2  | Analogue Temp Input 2                           |
| 36  | AT3  | Analogue Temp Input 3                           |
| 37  | AT4  | Analogue Temp Input 4                           |
| 38  | AT5  | Analogue Temp Input 5 (with 52 I/O upgrade)     |

| Pin | Name  | Function                                        |  |
|-----|-------|-------------------------------------------------|--|
| 39  | AT6   | Analogue Temp Input 6 (with 52 I/O upgrade)     |  |
| 40  | 0V    | Sensor 0 V                                      |  |
| 41  | AT7   | Analogue Temp Input 7 (with 52 I/O upgrade)     |  |
| 42  | AT8   | Analogue Temp Input 8 (with 52 I/O upgrade)     |  |
| 43  | 0V    | Sensor 0 V                                      |  |
| 44  | 5V    | Sensor 5 V                                      |  |
| 45  | AV1   | Analogue Voltage Input 1                        |  |
| 46  | AV2   | Analogue Voltage Input 2                        |  |
| 47  | AV3   | Analogue Voltage Input 3                        |  |
| 48  | AV4   | Analogue Voltage Input 4                        |  |
| 49  | AV5   | Analogue Voltage Input 5                        |  |
| 50  | AV6   | Analogue Voltage Input 6                        |  |
| 51  | OV    | Sensor 0 V                                      |  |
| 52  | DIG1  | Digital Input 1                                 |  |
| 53  | DIG2  | Digital Input 2                                 |  |
| 54  | DIG3  | Digital Input 3                                 |  |
| 55  | DIG4  | Digital Input 4                                 |  |
| 56  | 0V    | Sensor 0 V                                      |  |
| 57  | SW1   | Switch Input 1                                  |  |
| 58  | SW2   | Switch Input 2                                  |  |
| 59  | SW3   | Switch Input 3                                  |  |
| 60  | SW4   | Switch Input 4                                  |  |
| 61  | 0V    | Sensor 0 V                                      |  |
| 62  | 8V    | Sensor 8 V                                      |  |
| 63  | SPD1  | Speed Input 1                                   |  |
| 64  | SPD2  | Speed Input 2                                   |  |
| 65  | SPD3  | Speed Input 3                                   |  |
| 66  | SPD4  | Speed Input 4                                   |  |
| 67  | E-TX+ | Ethernet Transmit +                             |  |
| 68  | E-TX- | Ethernet Transmit -                             |  |
| 69  | AV20  | Analogue Voltage Input 20 (with 52 I/O upgrade) |  |
| 70  | TX    | RS232 Output                                    |  |
| 71  | OV    | 0 V CAN                                         |  |
| 72  | 8V    | 8 V CAN                                         |  |
| 73  | CANOL | CAN 0 Low                                       |  |
| 74  | CANOH | CAN 0 High                                      |  |
| 75  | CAN1L | CAN 1 Low                                       |  |
| 76  | CAN1H | CAN 1 High                                      |  |
| 77  | E-RX+ | Ethernet Receive +                              |  |
| 78  | E-RX- | Ethernet Receive -                              |  |
| 79  | RX    | RS232 Input                                     |  |